Surname
Other Names

Centre Number

GCE AS/A level

CHEMISTRY - CH1

A.M. THURSDAY, 10 January 2013
l $1 / 2$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the Periodic Table supplied by WJEC.

Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

FOR EXAMINER'S							
USE ONLY			$	$	Section	Question	Mark
:---:	:---:	:---:					
A	$1-6$						
B	7						
	8						
	9						
	10						
	11						
TOTAL MARK							

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Section A Answer all questions in the spaces provided.
Section B Answer all questions in the spaces provided.
Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The maximum mark for this paper is 80 .
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.
The $Q W C$ label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.
If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

SECTION A

Answer all questions in the spaces provided.

1. The mass number of an isotope of gallium is 70 .

State the number of neutrons in an atom of this isotope.
2. Write the letter which represents the correct equation for the second ionisation energy of gallium in the box below.

A $\mathrm{Ga}(\mathrm{g})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ga}^{2-}(\mathrm{g})$
B $\quad \mathrm{Ga}(\mathrm{g}) \longrightarrow \mathrm{Ga}^{2-}(\mathrm{g})+2 \mathrm{e}^{-}$
C $\mathrm{Ga}^{+}(\mathrm{g}) \longrightarrow \mathrm{Ga}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
D $\mathrm{Ga}^{2+}(\mathrm{g})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ga}(\mathrm{g})$

3. An enriched isotopic mixture of lithium contains ${ }^{6} \mathrm{Li} 12.0 \%$ and ${ }^{7} \mathrm{Li} 88.0 \%$ by mass. Showing your working, calculate the relative atomic mass of this sample of lithium. Give your answer to three significant figures.
4. The energy cycle for a decomposition of nitrogen(II) oxide is shown below.

(a) Complete the equation to show $\Delta \mathrm{H}$ in terms of $\Delta \mathrm{H}_{1}, \Delta \mathrm{H}_{2}$ and $\Delta \mathrm{H}_{3}$.
$\Delta \mathrm{H}=$ \qquad
(b) Write the chemical equation for the standard molar enthalpy change of formation of gaseous nitrogen(II) oxide, NO.
\qquad
5. Carbon oxide sulfide, COS, is obtained by heating together carbon monoxide and gaseous sulfur.

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{COS}(\mathrm{~g})
$$

State and explain any change that occurs when more carbon monoxide is added to the equilibrium mixture.
\qquad
\qquad
\qquad
\qquad
\qquad
6. An oxide of titanium contains 60% of titanium by mass. Calculate the empirical formula of this oxide of titanium.

$$
\left[A_{\mathrm{r}}(\mathrm{Ti})=48\right]
$$

Empirical formula

\qquad

7. (a) In 2011 a man was detained at Moscow Airport when he tried to smuggle samples containing a radioactive isotope of sodium, ${ }^{22} \mathrm{Na}$, onto an aircraft.
(i) This isotope is made from an aluminium isotope by loss of an α-particle.

State what is meant by an α-particle.
(ii) ${ }^{22} \mathrm{Na}$ decays by the loss of a positron. This may occur by the breakdown of a proton into a neutron and a positron, giving the product, ${ }^{b} \mathrm{X}$.

Deduce the mass number (b) and the chemical symbol (X) of this product.

(iii) The half-life of the isotope ${ }^{22} \mathrm{Na}$ is 2.6 years. The mass of a sample of this isotope is 48 mg .

Calculate the time taken for the mass of ${ }^{22} \mathrm{Na}$ to fall to 3 mg .

Time taken $=$ \qquad years
(b) The visible emission spectrum of sodium shows a strong yellow-orange line at a wavelength of 589 nm and a weaker green line at 569 nm .

Complete the sentences below by using the words higher or lower as appropriate.

The frequency of the green line at 569 nm is \qquad than the frequency of the yellow-orange line at 589 nm . Another line is seen at 424 nm . This is caused by an electronic transition of \qquad energy than the line at 569 nm .
(c) Trona is a naturally-occurring 'sodium carbonate' mineral. It has the formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$.
(i) Show that the relative molecular mass of trona is 226 .
(ii) On heating, trona loses water and carbon dioxide giving sodium carbonate.
$2\left[\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right](\mathrm{s}) \longrightarrow 3 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate the atom economy of this reaction, assuming that sodium carbonate is the only required product.

Atom economy $=$ \qquad
(iii) The above reaction is used commercially to obtain sodium carbonate.

Suggest one environmental disadvantage of this reaction as indicated by the equation, and state what could be done to overcome this problem.
\qquad
\qquad
\qquad
\qquad
(d) When sodium carbonate is added to water, some of the carbonate ions react with the water to give an alkaline solution.

$$
\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

(i) Explain why this reaction is considered to be an acid-base reaction.
\qquad
\qquad
\qquad
\qquad
(ii) The pH of a sodium carbonate solution is 11.4.

How would you explain the meaning of the pH scale to a member of the public?

Total [15]
8. Dolomite, $\mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3}$, is a mineral containing magnesium carbonate and calcium carbonate.
(a) Some students were asked to react samples of dolomite, each of mass 0.50 g , with an excess of dilute hydrochloric acid and to follow the rate of the reaction by measuring the volume of carbon dioxide evolved at suitable time intervals.
(i) Line A on the graph shows Natalie's results. Her teacher said that this was correct. David's line is labelled B. Although his line represents his results, the teacher said that he must have done something wrong during the experiment to obtain these results.
Volume $/ \mathrm{cm}^{3}$

Suggest and explain two things that he might have done wrongly to obtain these results.
1.
2.
(ii) Explain why, in Natalie's experiment, 0.25 g of the dolomite has reacted in 1.5 minutes but the remaining 0.25 g has taken a further 3.5 minutes to react.
(iii) Emma asked what the volume of carbon dioxide collected from the samples would be if the temperature rose from 298 K to 323 K .
The teacher explained that, if the pressure remained the same, volume V (in cm^{3}) and temperature T (in Kelvin) were linked by the equation

$$
\mathrm{V}=\mathrm{k} \times \mathrm{T} \quad \text { where } \mathrm{k} \text { is constant. }
$$

The volume of carbon dioxide evolved at 298 K is $130 \mathrm{~cm}^{3}$. By finding the value of k , or by other means, calculate the volume of this carbon dioxide when its temperature is raised to 323 K .
\qquad cm^{3}
(b) In another experiment 0.623 g of dolomite reacted with an excess of dilute hydrochloric acid. The total volume of carbon dioxide evolved was $162 \mathrm{~cm}^{3}$.
(i) Calculate the total volume of carbon dioxide that would be evolved if a sample of dolomite of mass 1.00 g was used under the same conditions.

Volume of carbon dioxide $=$ \qquad cm^{3}
(ii) Use the graph below to find the mass of magnesium carbonate present in this 1.00 g sample of dolomite.

Volume of carbon dioxide $/ \mathrm{cm}^{3}$

(c) The rate of the reaction between dolomite and hydrochloric acid increases by a large amount if the temperature is increased.

Complete the following energy distribution curve diagram by drawing two lines that show the distribution of energies at two different temperatures.
Label the line at lower temperature T_{1} and the line at higher temperature T_{2}. Use the diagram to help you explain why the rate increases as the temperature increases.

Fraction of molecules with energy, E

Energy, E

(d) Briefly outline a different method of following the rate of the reaction between dolomite and hydrochloric acid.
9. (a) Nitrogen(I) oxide is a colourless gas that reacts with hydrogen to give nitrogen and water.

$$
\mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-368 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) State why the standard enthalpy of formation of both hydrogen and nitrogen gases is $0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(ii) Calculate the standard enthalpy of formation of nitrogen(I) oxide in $\mathrm{kJ} \mathrm{mol}^{-1}$. (You should assume that the standard enthalpy of formation of water is $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
(b) A new method for producing phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, is by reacting benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, with nitrogen(I) oxide at $400^{\circ} \mathrm{C}$ in the presence of a suitable catalyst.

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{N}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2} \quad \Delta \mathrm{H}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) Sketch the energy profiles for the catalysed and uncatalysed reactions using the axes shown below. Label your profiles as catalysed and uncatalysed.

(ii) A pilot-scale plant used 156 kg of benzene $\left(M_{\mathrm{r}}=78\right)$ to produce phenol $\left(M_{\mathrm{r}}=94\right)$.

I Calculate the number of moles of benzene used.

Moles of benzene $=$ mol

II The yield of phenol was 95%. Using your answer to I and the equation below (or another suitable method), calculate the mass of phenol obtained. Show your working.

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{N}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}
$$

(iii) Study the short account below, which gives more detail about this process.

The process to make phenol is carried out in the gas phase and uses a solid zeolite catalyst. The operating temperature is around $400^{\circ} \mathrm{C}$.

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{N}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2} \quad \Delta \mathrm{H}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The reactants are the hydrocarbon benzene and nitrogen(I) oxide, which is a potent greenhouse gas. The nitrogen(I) oxide is obtained from another process, where it is produced as an undesirable side product.

Use the account and the equation to comment on the environmental and Green Chemistry advantages of this process. A reference to the yield is not required. [4]
10. (a) Potassium hydroxide contains potassium ions, K^{+}.

Give the electron configuration of a potassium atom and use this to explain why most potassium compounds contain the potassium ion.
(b) Michael was asked to make $250 \mathrm{~cm}^{3}$ of a solution of potassium hydroxide and to record the maximum rise in temperature that occurred as it dissolved.
He measured $250 \mathrm{~cm}^{3}$ of water in a glass beaker and then added $7.01 \mathrm{~g}(0.125 \mathrm{~mol})$ of solid potassium hydroxide to this, with stirring.
He noticed that the temperature rose from $20.2^{\circ} \mathrm{C}$ to a maximum of $25.0^{\circ} \mathrm{C}$.
(i) Calculate the molar enthalpy change of solution of potassium hydroxide by use of the formula

$$
\Delta \mathrm{H}=-\frac{\mathrm{mc} \Delta \mathrm{~T}}{\mathrm{n}}
$$

where $\mathrm{m}=$ mass of the solvent in grams (assume $1 \mathrm{~cm}^{3}$ has a mass of 1 g)
$\mathrm{c}=4.2 \mathrm{Jg} \mathrm{g}^{-10} \mathrm{C}^{-1}$
$\Delta \mathrm{T}=$ change in temperature of the solution
$\mathrm{n}=$ number of moles of the solute
$\Delta \mathrm{H}=$ molar enthalpy change of solution
You should show the units in your answer.

$$
\Delta \mathrm{H}=
$$

(ii) Michael's measurements produced a value for the enthalpy of solution of potassium hydroxide that was different to the literature value.

Use the information given to suggest and explain two factors that might produce a different result.

1. \qquad
2. \qquad
(c) Solid potassium hydroxide can be used in analysis to find the percentage of carbon dioxide present in a mixture of gases. The equation for the reaction that occurs is given below.

$$
2 \mathrm{KOH}+\mathrm{CO}_{2} \longrightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

$2.0 \mathrm{~m}^{3}$ of a gas mixture was passed through potassium hydroxide. Analysis showed that 0.050 mol of potassium carbonate had been formed.
(i) State the number of moles of carbon dioxide necessary to produce 0.050 mol of potassium carbonate.
(ii) Calculate the volume of carbon dioxide that produced 0.050 mol of potassium carbonate.
[1 mol of carbon dioxide has a volume of $24.0 \mathrm{dm}^{3}$ under these conditions]

Volume of carbon dioxide $=$ \qquad dm^{3}
(iii) Calculate the percentage of carbon dioxide in the gas mixture, in terms of volume.

$$
\left[1 \mathrm{dm}^{3}=0.001 \mathrm{~m}^{3}\right]
$$

Percentage of carbon dioxide $=$ $\%$
(d) Scientists have commented that 'an increase in the amount of carbon dioxide dissolved in sea water will cause problems for animals whose shells are composed of calcium carbonate'.

$$
\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

Use the equation above to help you discuss the problem that is caused for these animals by this increase in carbon dioxide concentration.
11. (a) An aqueous solution of methanoic acid can be used to dissolve 'lime scale' in kettles. The concentration of a methanoic acid solution used for this purpose can be found by a titration using sodium hydroxide solution. For this purpose a $25.0 \mathrm{~cm}^{3}$ sample of aqueous methanoic acid was diluted to $250 \mathrm{~cm}^{3}$.
(i) State the name of the piece of apparatus used to

I measure out $25.0 \mathrm{~cm}^{3}$ of aqueous methanoic acid,

II contain exactly $250 \mathrm{~cm}^{3}$ of the diluted solution.
(ii) A $25.0 \mathrm{~cm}^{3}$ sample of the diluted methanoic acid was titrated with sodium hydroxide solution of concentration $0.200 \mathrm{moldm}^{-3}$. A volume of $32.00 \mathrm{~cm}^{3}$ was needed to react with all the methanoic acid present.

Calculate the number of moles of sodium hydroxide used.

Moles of sodium hydroxide $=$ mol
(iii) Methanoic acid and sodium hydroxide react together in a 1:1 molar ratio. Use the graph below and your result from (ii) to find the concentration of methanoic acid present in the diluted solution in g per $100 \mathrm{~cm}^{3}$ of solution.

Concentration of diluted methanoic acid/g per $100 \mathrm{~cm}^{3}$

> Concentration =
\qquad g per $100 \mathrm{~cm}^{3}$
(iv) State the concentration of the original methanoic acid in g per $100 \mathrm{~cm}^{3}$ solution.

Original concentration $=$ \qquad g per $100 \mathrm{~cm}^{3}$
(b) Methanoic acid, HCOOH , can be reduced to methanol, $\mathrm{CH}_{3} \mathrm{OH}$, in a gas phase reaction, by using hydrogen in the presence of a solid ruthenium metal catalyst.
(i) Ruthenium is acting as a heterogeneous catalyst. State the meaning of the word heterogeneous.
(ii) The equation for the reduction of methanoic acid is shown below.

Use the table of bond enthalpies to find the enthalpy change for this reaction. [3]

Bond	Average bond enthalpy $/ \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{C}-\mathrm{H}$	412
$\mathrm{C}-\mathrm{O}$	360
$\mathrm{C}=\mathrm{O}$	743
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}-\mathrm{H}$	463

(c) The relative molecular mass of methanoic acid is 46.02 .

State why this quantity does not have units.
(d) Methanoic acid reacts with propan-1-ol to give 1-propyl methanoate.

$$
\mathrm{HCOOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons \underset{\substack{\text { 1-propyl methanoate }}}{\mathrm{HCOOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}+\mathrm{H}_{2} \mathrm{O}
$$

(i) This reaction eventually reaches dynamic equilibrium.

State what is meant by dynamic equilibrium.
\qquad
\qquad
\qquad
(ii) Give the empirical formula of 1-propyl methanoate.

Empirical formula

END OF PAPER

Examiner only

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

GCE AS/A level
 WJEC
 CBAC
 1091/01-A

 CHEMISTRY - PERIODIC TABLE

 CHEMISTRY - PERIODIC TABLE FOR USE WITH CHI

 FOR USE WITH CHI}

A.M. THURSDAY, 10 January 2013

2

